The Wind Forecast Improvement Project: Final Results from the Southern Study Area

a DOE sponsored / NOAA collaborative effort

J. Freedman, J. Zack, K. Rojowsky, P. Beaucage, and K. Pennock (AWS Truepower)
J. Manobianco, E. Natenberg, and S. Young (MESO)
C. D’Annunzio and I. Flores (ERCOT)
S. Calvert and J. Cline (DOE)
J. Wilczak and S. Benjamin (NOAA)
J. Schroeder and B. Ancell (TTU)
K. Brewster and K. Thomas (OU CAPS)
S. Basu (NCSU)
V. Banunarayanan and S. Nasir (ICF International)
L. Berg (PNNL)
K. Orwig and J. Zhang (NREL)

American Meteorological Society 5th Conference on Weather, Climate and the New Energy Economy - 6 February 2014
How do (did) we improve the performance of short term (0 - 6 hours) wind forecasting?
How do (did) we accurately measure the improvement?

Focus here: Southern Study Domain encompassing most of north, central, and west Texas
Balancing Authority: Electric Reliability Council of Texas (ERCOT)
Wind Power on the ERCOT System

System Load (2011 - 2012)

Average hourly: 38,255 MW
Range: 22,386 to 68,392 MW

Wind Power
Total: 9801 MW (Jan 2012)
In WFIP area: 8296 MW (85%)
Referred to as ”WFIP project aggregate”

Much of capacity concentrated in a small area of NW Texas (near Sweetwater, TX)

Frequent occurrence of large system-wide ramps (large excursions of power production in short time periods, e.g. 20% change in 30 minutes)

Southern Study Area: focus on Electric Reliability Council of Texas (ERCOT) domain — largest number of operating wind farms (> 10,000 MW) in the U.S.
Field Deployment

Additional Instrumentation
3 profilers w/RASS
7 sodars
6 surface met and flux stations
200-m TTU tower and 15 - 35 Tall Towers (wind farms; 50 total)
WFIP Forecast System

- Large Scale Models (GFS, RAP)
- Ensemble of Rapid Update Short-term NWP (MASS, WRF, ARPS, HRRR)
- Statistical Adjustment Process (e.g. MOS)
- Ensemble Composite Algorithm (weighting application)
- Final Forecast
Phenomena

1. Synoptic scale (fronts, dry lines) ➤ big ramps; easier to predict

2. Low-level jets (LLJs) ➤ common (Freedman et al. 2008); periodic but large variability in small Δz presents forecast difficulty

3. Mesoscale (convection, outflow boundaries) ➤ tougher to predict given temporal and spatial scales
LLJs are a dominant mechanism responsible for the nocturnal wind speed max...key is where and when $\Rightarrow f(x, y, z, t)$

One-year composite Reagan TX

Sept 2011 - August 2012
Evident in power production - regular, periodic, predictable?

Capacity Factor - sequence of days
Temporal and spatial extent

30 June 2013

Ozona

Cleburne

Reagan

Lubbock
Sequence Forecast Performance

Observations and 3-hr Forecasts for WFIP Aggregate

Undadjusted Raw Model Output And Final STWFP, WFIP From 28-Jun to 2-Jul 2012 UTC

Power (MW)

28-Jun 29-Jun 30-Jun 1-Jul 2-Jul

Decimal Day

©2014 AWS Truepower, LLC
Model Performance - 3 hr forecast

Taylor diagram

Visualize the phase and amplitude of model performance compared with the observations

3 metrics (R^2, RMSE, and SD) on 2D space

Observations - the perfect forecast

Improvement in all 3 domains
Removed diurnal bias

Baseline

Issue with evening and morning transition

Capacity Factor
2 hr forecast

WFIP

Capacity Factor
4 hr forecast of
\(\Delta 15\) min

Baseline

\(\Delta 15\) min

15-min Delta Capacity Factor Bias for the Baseline Forecast Time = 4 for AGG

WFIP

\(\Delta 15\) min

15-min Delta Capacity Factor Bias for the WFIP Forecast Time = 4 for AGG
Model Performance

Diurnal patterns - 3 hr forecast

Distinct diurnal pattern in R2, SD, and RMSE

Better performance across stats - more clustered

Baseline

WFIP
Largest Up Ramp Events and Their Causes

- Analyzed 10 largest 60-minute upward ramp rate events
- Subjectively identified cause
 - Blue: Cold front
 - Red: Thunderstorms/outflow boundaries
 - Green: Low Level Jet (LLJ)
 - Dark: strengthening large scale pressure gradient at night
 - Light: diurnal cycle with embedded convection

Ramp: a specified excursion in (variable energy) power production during a defined time period - particular to utility, ISO, BA, etc.
NWP Ensemble Performance on Big Events

• **Metric:** Fraction of ensemble members that achieve a "hit"

• **Hit:** > 75% of amplitude within +/- 2 hours of event

• **Hit Rate by Type**
 – Cold Front (blue)
 • 8-10 hrs ahead: 84%
 • 2-4 hrs ahead: 95%
 – Thunderstorm-related (red)
 • 8-10 hrs ahead: 10%
 • 2-4 hrs ahead: 48%
 – Low Level Jet (green)
 • 8-10 hrs ahead: 46%
 • 2-4 hrs ahead: 71%

8-10 hrs ahead forecast: left bar for each event
2-4 hrs ahead forecast: right bar for each event
Big Ramp Event: 8 September 2012

9/7 18z - 9/8 00z
Cold front over TX panhandle, extending SW to NE and progressing southward

9/8 00z-01z
Front reaches ERCOT area

SWN: 00:45z
SWE: 01:30z
ETX: 01:30z

Legend: dBZ

REFLECTIVITY
ELEV ANGLE: 0.54
Observed Power Output By Capacity Factor For All ERCOT WFIP and Regional Aggregates

For 9/7/2012 To 9/8/2012

From 17% to 80% (1400 MW to 6350 MW) in 1.56 hours!
Summary

• Observations demonstrate ability to capture temporal and spatial dimensions of mesoscale and synoptic features/events common to the ERCOT domain, and in particular, those affecting wind power production

• Spatial extent of LLJ (“sheet”) can cover large portions of ERCOT

• WFIP model system a significant improvement over baseline (STWPF) forecasts
 - notable improvement in statistical space (RMSE, SD, R²)
 - elimination of diurnal biases (particularly evening and morning transition)
 - much better performance on ramp predictions (RPSS)

• Final Report - next few weeks
Thank You!